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1. Introduction

In 1965,the concept of fuzzy set was introduced by Zadeh [1] which laid the foundation of fuzzy
mathematics.George and Veeramani[3] modified the notation of fuzzy metric space introduced by
Kramosil and Mechalek[2]. Grabic [4] obtained the Banach contraction principle in fuzzy version. In 2004
R Singh etal[14] initiated concept of compatible mappings of Type (R ).

Definitions and Preliminaries

Definition 1.1: A binary operation * :[0,1]x[0,1] —[0,1] is called continuous t-norm if * satisfies the
following conditions:

(i) *is commutative and associative

(i) * is continuous

(iii)a*1=a for all a€[0,1]

(iv)a*b < c*d whenever a <c and b<d for all a, b,c,d €[0,1]

Definition 1.2: A 3-tuple (X, M,*) is said to be fuzzy metric space if X is anarbitrary set,* is continuous t-
norm and M is a fuzzy set on X?x(0,00) satisfying the following conditions for all x,y,ze X, s,t>0

(FM-1) M(x,y,0)=0

(FM-2) M(x,y,t)=1 for all t>0 if and only if x=y

(FM-3) M(x,y,t)= M(y,x,t)

(FM-4) M(x,y,t) * M(y,z,8) < M(X,z,t+s)

(FM-5) M(x,y,.) : [0,00) —[0,1] is left continuous

(FM-6) !Lrg M(x,y,t)=1 for all x,y in X

the function M(X, y,t) denote the degree of nearness between x and y with respect to ‘t’.
Example 1.3 (Induced fuzzy metric space): Let (X,d) be a metric space defined a*b=min{a,b} for all
X,yeX and t>0,

t
M(X, y,t):m ____(a)

Then (X, M,*) is a fuzzy metric space. We call this fuzzy metric M induced by metric d the standard fuzzy
metric. From the above example every metric induces a fuzzy metric but there exist no metric on X
satisfying (a).

Definition 1.4: Let (X, M,*) be a fuzzy metric space then a sequence <x»> in X is said to be convergent to a
point xe X , if
limM(x,,xt)=1 for all t>0.
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Definition 1.5: A sequence <x,> in X is called a Cauchy sequence if
limM (x t)=1 forallt>0and p>0.

n+p'Xn’

Definition 1.6: A fuzzy metric space (X, M,*) is said to be complete if every Cauchy sequence is
convergent to a point in X.

Lemma 1.7 : Forall x,yeX, M(x,y,.) is non decreasing.
Lemma 1.8: let (X,M,*)be a fuzzy metric space if there exists ke(0,1) such that M(x,y.kt)>M(x,y,t) then

X=Y.
Proposition 1.9: In the fuzzy metric space (X, M,*) if a*a>a for all a€[0,1] then a*b= min{a,b}.

In 2004,Rohan et al. introduced the concept of compatible mappings of Type (R ) in metric space as
follows:

Definition 1.10: Let f and g be two mappings of a metric space (X,d) into itself. Then f and g are called
compatible of type (R ) if im d(fgxn,gfxn)=0 and lim d(ffx,,ggx»)=0 whenever <x»> is a sequence in X
such that lim fx,=lim gx,=z for some zeX.

n—oo n

Now Compatible mapping of Type (R ) in fuzzy metric space as follows

Definition 1.11: Let S and T be two mappings of a fuzzy metric space (X,M,*) into itself. Then Sand T
are called compatible of type (R ) if im M(STxn, TSxn,t)=1 and lim M(SSxn, TTxn,)=0 whenever <x»> is

a sequence in X such that im Sx,=lim Tx,=z for some zeX.

n—ow n—oo

Proposition1.12: Let S and T be compatible mappings of type (R ) of a complete fuzzy metric space
(X,M,*) into itself If Sz=Tz for some te X then STz=SSz=TTz=TSz

Proposition1.13: Let S and T be mappings from a complete fuzzy metric space into itself. If a pair (S,T) is
compatible is compatible type (R ) on X and if lim Sx,=lim Tx,=z for some zeX then we have

n— n—

(i) lim M(TSxn,Sz,t)=1 if Sis continuous
(i) im M(STxn,Tz,t)=1 if T is continuous

(iii)STz=TSz if S and T are continuous at z.
Proof: (i) Suppose that S is continuous at z. Since lim Sx,=lim Tx,=z for some zeX,

n—o n—ow

we have  lim SSx,= lim STx,= Sz .Since S and T are compatible of type (R ), then we have

n—o n—o

lim M(TSxn,Sz,t)=1 and lim M(SSxn, TTxn,t)=1.Therefore lim TSx,= Sz

(i1) Similar arguments as in (i)
(iif)Suppose S and T are continuous at z and <x»,> is a sequence in X defined x, =z (n=1,2,..) for some
zeX.

Since Sxn—z Txn—z as n—oo and S is continuous at z, by (i) lim M(TSxn,Sz,t)=1.

On the other hand , T is also continuous at z , im M(TSxa, Tz,t)=1.Thus,we have Sz=Tz by the uniqueness

of limit and also by proposition 1.12 , STz=TSz.

This completes the proof.

Main results:

2.1 Theorem: Let A, B, S and T are self maps of a complete Fuzzy metric space (X, M,*) satisfying the
conditions
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2.1.1 B(X) < S(X) and A(X) = T(X)
212 [M (Ax, By, kt)]2 *M (Ax, By, kt)M (Ty, Sx, kt) > {k, [M (By, Sx, 2kt)* M (Ax, Ty, 2kt) ]
+k, [M (Ax, Sx, kt)* M (By, Ty, kt) [}M (Ty, Sx, t)

Where for all x,y in X and ki,k2>0 ,k1+k>>1
2.1.3 one of the mappings A,B,S and T is continuous
2.1.4 the pairs (T, B) and (S,A) are compatible of type( R)
then A, B,S and T have a unique common fixed point z in X.

2.1.5 Lemma: Let A;B,S and T be self mappings from a complete fuzzy metric space (X,M,*) into itself
satisfying the conditions (2.1.1)and (2.1.2). Then the sequence {yn} defined by y2n=BXa2n= Sxon+1 and
Yon+1=AXon+1 = TXon+2 for n > 0 relative to four self maps is a Cauchy sequence in X.

Proof of the Lemma: Let Xo be any arbitrary point of X, B(X) < S(X) and A(X)c T(X) and there exists
X1,X2€ X such that  Bxo=Sxiand Axi=Tx.

Inductively we construct a sequence <xn> and <y,>in X such that y>n=BXon= SXon+1 and Yan+1=AXon+1 =
Txone2 forn>0.

By taking X=Xon , y=Xan+1 in 2.1.1
[M (AX2n+l’ BXZn’ kt)]2 * M (AX2n+l’ BXZn’ kt)M (TXZn ' SX2n+l’ kt) 2{kl [M (BXZn ' SX2n+1’ 2kt)* M (AXZnJrl'TXZnl 2kt) ]
+Ky [M (AXyp,1, SXpp 0, KE) * M (BXy, Ty, kt) IM (T, SXi.t)

[M Yoot Yo KO T *M (Yoo Vo KOM (Yo s, Vo KO 24K [M (Yo Yans 2KO)* M (Yain, Yo s, 2KE) |
+ Ky [M (Yani1s Yans KD *M (V1 Yoo 1 KO TIM (Y501, Yo 1)
[M (Yan15 Yans KO TEM (Va1 Yons KO * M (Yo 15 Yons KO3 2 LK [M (Vo0 Von 1 2K1)]
+ Ky [M (Yani1s Yans KD *M (V1 Yan 1 KO TIM (Yo 1, Yops 1)
[M (Yzn: Yanis KO M (Vanaas Yon 10 2KDI 2 €K [M (Yan10 Von 10 2K ]+ K IM (Y, 4, Yana 2k)IM (Y500 Yanar t)
[M (Yzn1 Yanis KO]IM (Va1 Yan 1, 2KOT 24K, + K HM (Yan00 Yangs 2KOTM (Va0 Yo 101)
[M (Yo Yo kD] 24Ky + K3 M (Y04, Yoo t)
[M(Yan: Yanas KO] 2 M (Yo 4, Yo )
[M (Y, Yaoa KO = M (Y, g, Yo 1)

M(ynlyn+1!t) 2 M(yn—l’yn’%) 2 I\/I(yn—l’yni%Z)Z M(yn—llynl%3) """" 2 M(yn—l’yn! tkn)
implies M(Yn,Yn+1,t)—1 as n—oo

This

For each ¢ >0 and t>0 we can choose noeN such that M(yn ,Yn+1,t)> 1-¢

For m,ne N suppose m > n

M (ynl ym't) Z |:M (yn! yn+1l %n_ n)*M (yn+1l yn+2!%n_n)*"“* M (ymfli ym’%n_ n)]
>[1-&)*(L-&)*....(L-¢)
>(1-¢)

This shows that the sequence {yn} is a cauchy sequence in X and, it converges to a limit, say ze X.

Consequently ,the sub sequences {Bxan},{Sx2n+1 },{ Axan+1},{ TXan+2} Of sequence {yn} also converges to
z.

Proof of main Theorem:
Now suppose that T is continuous: .
Since the pair (T,B) is compatible of type ( R) by preposition 1.13, TTx2n, BTX2n converges to Tz as n—co.
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We claim Tz=z .Putting y=TXzn, X=X2n+1 in inequality 2.1.2
[M (A%,.1, BTy, kO] * M (Axy,, BTX,0, KM (TTX,,, SXy1,1, k) > 4K, [M (BT, SX
+ Ky [M (A1, SXop i, K * M (BT, TTX,,, kt) M (TTX,, X, t)
[M(z,Tz,kt)]z*M(z,Tz,kt)M (Tz,z,kt) > {k,[M (Tz,z, 2kt)* M (z,Tz, 2kt) |
+k,[M(z,2,kt)*M (Tz,Tz,kt) M (Tz, z,t)
[M(z,T2,k)] *[M (2, Tz,k)] >{k,[M (Tz,2,2kt) ]+ k, [L}M (Tz,2,t)
[M(z,Tz,kt)] >{k,[M (Tz,z,2kt) | +k, [1]}
k2
1-k
[M(z,Tz,kt)]>1
therefore Tz=z.

2kt)* M (AXyy, 1, TTX,,, 2kt) |

2n+17

[M(z,Tz,kt)] >

next we claim that Bz=z.
Putting X=Xon+1, Y=z in inequality 2.1.2

[M (A%,,.1, BZ,kt)]" * M (Ax,,..1, Bz, k)M (TZ, ¥, .., kt) > {k, [M (BZ, Sxy,..1, 2kt) * M (AXy,.1, TZ, 2kt) |
+K, [M (AXyp.10 SXopp, KE) * M (BZ, Tz, kt) IM (T2, SX, .1, 1)
[M(z, Bz,kt)]z*M (z,Bz,kt)M (z,z,kt) >{k,[M (Bz, z, 2kt) * M (z, z, 2kt) |
+k,[M (z,2,kt)*M (Bz, z,kt) fM (z, z,t)
[M(z, Bz,kt)]z*[M (z,Bz,kt)]>{k,[M (Bz, z, 2kt) |+ k,[M (Bz,z,kt) }M (z, 2,t)
[M(z,Bz,kt)]" > k, +k,[M (Tz,z,2kt) |
[M(z,Bz,kt)] >k, +k,
[M(z,Bz,kt)]>1
Therefore Bz=z
Since from the condition B(X) < S(X), there exists a point ue X such that z=Su=Bz.
Put x=u , y=z in inequality 2.1.2
[M(Au, Bz,kt)]z*M (Au, Bz, kt)M (Tz, Su, kt) >{k,[M (Bz, Su, 2kt) * M (Au, Tz, 2kt) |
+k,[M (Au, Su,kt)*M (Bz,Tz,kt) }M (Tz, Su,t)
[M(Au,z, kt)]z*M (Au,z,kt)M (z, z,kt) >{k, [M (z, z, 2kt)* M (Au, z, 2kt) |
+k,[M (Au, z,kt)*M (z,z,kt) fM(z,7,t)
[M(Au,z, kt)]2 >{k,[M (Au, z, 2kt) ] +k,[M (Au, z,kt) M (z, ,t)
[M(Au, z,kt)] > k; +k,
[M(Au,z,kt)]>1
Therefore Au=z

Since (S,A) is compatible type (R) and Su=Au=z,by Proposition SAu=ASu and hence
Sz=SAu=ASu=Az

Toprove Az=z Putx=2z,y=12

[M(Az,Bz,kt)]z*M(Az,Bz,kt)M (Tz,Sz,kt) > {k, [M (Bz, Sz, 2kt) * M (Az,Tz, 2kt) |
+k,[M (Az,Sz,kt)*M (Bz,Tz,kt) }M (Tz,Sz,t)

[M(Az,z,kt)]z*M(Az,z,kt)M(z,Az,kt)z{kl[M(z,Az,2kt)*M(Az,z,2kt)]
+k,[M (Az, Az, kt)*M (z,z,kt) M (z, Az, 1)

[M(Az,2,kt)]" > {k,[M (Az,z,2kt) |+ k, [LIM (z, Az, 1)
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k2
-k,

[M(Az,z,kt)]>

[M(Az,z,kt)]>1

Az=z implies Sz=z

Hence z=Az=Bz=Sz=Tz gives z is common fixed point of A,B,S and T.
Similarly we can prove when S is continuous.

Suppose B is continuous. Since the pair (T,B) is compatible of type R.
By preposition 1.13, BBx2n, TBX2n converges to Bz as n—oo.

We claim that z=Bz

Putting Xx=Xzn+1 , Y=BXzn In inequality 2.1.2

[M (AX,,.,, BBX,,, kt)]2 *M (AX,,,,, BBX,,, kt)M (TBX,,, SX,,, ;. kt) Z{kl[M (BBX,,, SX,,,.;, 2kt)* M (AX,,.,, TBX,,, 2kt) ]
+K, [M (AXyp,10 SXopazs KE)* M (BBX,,, TBX,,, Kt) M (TBX,,, SX,p.,1,t)
[M(z, Bz,kt)]z*M (z,Bz,kt)M (Bz,z,kt) > {k,[M (Bz, z, 2kt) *M (z, Bz, 2kt) |
+k,[M (z,2,kt)*M (Bz, Bz, kt) }M (Bz, z,t)
[M(z,Bz,kt)] *[M (z, Bz, kt)]" >{k,[M (Bz,z, 2kt) ]+ k, [L}M (Bz, 2,t)
[M(z,Bz,kt)] > {k [M(Bz z,2kt) |+k, [1]}
[
[

M (z, Bz, kt)

121
M (z, Bz, kt)]z
This implies Bz=

From the condition B(X) < S(X) implies there exists v e X such that z=Bz= Sv.

We claim that z=Av
Putting X=Vv , y=Bx2n in inequality 2.1.2

[M (Av, BBX,,, kt)] * M (Av, BBX,, , kt)M (TBX,,, Sv, kt) > {k, [M (BBX,,, Sv, 2kt) * M (Av, TBx,,, 2kt) |
+k, [M (Av, Sv, kt) * M (BBX,,, TBX,,, kt) [}M (TBX,,, SV, )

[M(Av,Bz, kt)]2 *M (Av, Bz, kt)M (Bz, Bz, kt) > {k, [M (Bz, Bz, 2kt)* M (Av, Bz, 2kt) |
+k,[M (Av, Bz, kt)* M (Bz, Bz, kt) [}M (Bz, Bz,1)

[M(Av, z, kt)]2 *M (Av, 7, kt) >{k, [M (Av, z, 2kt) |+ k,[M (Av, ,kt) JM (2, z,1)

[M (AV, z,kt)] = {k, +k,}

[M(Av,zkt)]>1

Implies Av=z
Since the pair (S,A) is compatible of type (R) and Sv=Av=z.By preposition 1.13, SAv=ASv and hence
Sz=SAvV=ASv=Az.

We claim that Az=z
Putting X=z , y=Xzn in inequality 2.1.2
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[M(Az, sz,],kt)]2 *M (Az, BX,,, kt)M (Tx,,, Sz, kt) > {k, [M (BX,,, Sz, 2kt) * M (Az,Tx,,, 2kt) ]
+k, [M (Az,Sz,kt)* M (BX,,, TX,,, kt) M (TX,,, Sz,1)
[M(Az,z, kt)]2 *M (Az,2,kt)M (z, Az, kt) > {k,[M (z, Az, 2kt) * M (Az, z, 2kt) |
+k,[M (Az,Sz,kt)*M (z,z,kt) M (z, Az,t)
[M(Az, 2,kt)]" >{k,[M (z, Az, 2kt) ]+ k, [L M (z, Az, 1)
[M(Az,z,kt)] >{k [M (z, Az,kt) | +k,[1 T}
[ -
1-k
[

1

M (Az,z,kt)]>

M (Az,z,kt)|>1

Implies Az=z
Since the condition A(X) < T(X) implies there exists we X such that z=Az=Tw

We claim that z=Bw
Putting x=z,y=w in inequality 2.1.2

[M(Az, Bw, kt)]z*M (Az, Bw, kt)M (Tw, Sz, kt) > {k, [M (Bw, Sz, 2kt)* M (Az, Tw, 2kt) |
+k,[M (Az,Sz,kt)*M (Bw, Tw, kt) M (Tw, Sz,t)

[M(z,Bw, kt)]2 *M (z, Bw, kt)M (Bw, z,kt) > {k, [M (Bw, z, 2kt) * M (z, Bw, 2kt) |
+k,[M (z,z,kt)*M (Bw, Bw, kt) [}M (Bw, 7,t)

[M (2, Bw,kt)]" > {k,[M (Bw, z, 2kt) ]+ k, [L[}M (Bw, z,t)

=

1

[M(z, Bw,kt)]>

[M(z,Bw,kt)]>1

Implies Bw=z

Since the pair (B,T) is compatible type (R ) and Bw=Tw=z

By preposition1.13, TBw=BTw and hence Tz=TBw=BTw=Bz

Therefore z=Az=Bz=Sz=Tz which gives z is common fixed point of A,B,S and T.
Similarly we can complete the proof when A is continuous.

Uniqueness completes the proof.

2.2 Example: Let X=[0,1], M(x,y,t)=; where d(x,y)=|x—y]|
t+d(x,y)

E ifO£x<1 1—x ifO§x<1
Ax = Bx = 61 , 8 sx=Tx= 1‘ 1 8

= if = <x<1 = if = <x<1

8 8 8 8

11 : 1 111 .
Then A(X) =B(X)= 3’ while S(X) =T(X) = §U 3’2 so that the conditions A(X) < T(X) and
B(X) <S(X) are satisfied . For this, take a sequence xn:[1+1j for n>1.
8 n

From the example given above, satisfies all the conditions of Theorem 2.1
Clearly 1/8 is the unique common fixed point of A, B, Sand T.
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